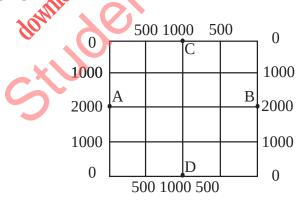
Roll No

MMIE/MMPD/MMIP/MMTP/MMMD-101

M.E./M.Tech., I Semester Examination, June 2020


Advanced Mathematics

Time : Three Hours

Maximum Marks : 70

Note: i) Attempt any five questions.ii) All questions carry equal marks.

- a) Define linearly dependent and independent sets. Check whether the vectors are (2, 1, 1), (0, 5, -1), (-1, 2, -1) are linearly independent or linearly dependent.
 - b) What is modular mathematics and solve $y = 2x + 3 \pmod{8}$ if x = 4.
- 2. a) Give mathematical formula : for $He_n(x)$ and show that $He_3(x) = x^3 3x$. Also write weight function for Hermite-Polynomial to be orthogonal.
 - b) Define the following with example:
 - i) Hash function
 - ii) Heaviside's unit function and error function
- 3. a) Solve the Laplace equation $U_{xx} + U_{yy} = 0$ for the square mesh with boundary values shown in the following figure $U_{xx} + U_{yy} = 0$ for the square mesh with boundary values shown in

b) Find the Fourier transform of :

$$f(x) = \begin{cases} 1 - x_2 , |x| \le 1\\ 0 , |x| > 0 \end{cases}$$

PTO

Download all NOTES and PAPERS at StudentSuvidha.com

Solve by the method of separation of variables: 4. a)

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
, where $u(x, 0) = 6e^{-3x}$.

- Explain the following with one example in each case where it is applied; b)
 - Haar transform i)
 - ii) Wavelet transform
- Fit a binomial distribution for the following data and compare the theoretical frequencies with 5. a) actual ones:

<i>x</i> :	0	1	2	3	4	5
f:	2	14	20	34	22	8

- b) Find the mean and standard deviation of Poisson's distribution.
- Show that every stochastic process {xt = 0, 1, 2,...} with independent increment is a Markov 6. a) process.
 - Obtain the steady state solution of (M/M/1∞ /FCFS) system and also find expected value of b) queue length n.
- What do you understand by queue? Give some important applications of queueing theory. 7. a)
 - Explain (M/M/1 : N/FCFS) queueing system and solve it under steady state condition. b)
- Use Rayleigh Ritz method to solve the equation: 8. a)

 $\frac{\partial^2 y}{\partial x^2} + y = x, \ y(0) = 0, \ y(1)$

b) What is the difference between FEM and DFT? How.
